Solution 6

1. Show that f is continuous from (X, d) to (Y, ρ) if and only if $f^{-1}(F)$ is closed in X whenever F is closed in Y.

Solution. Use $f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$ to reduce to the statement: f is continuous iff $f^{-1}(G)$ is open for open G.

- 2. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R} :
 - (a) $[1,2) \cup (2,5) \cup \{10\}.$
 - (b) $[0,1] \cap \mathbb{Q}$.
 - (c) $\bigcup_{k=1}^{\infty} (1/(k+1), 1/k).$
 - (d) $\{1, 2, 3, \cdots\}$.

Solution.

- (a) Boundary points 1, 2, 5, 10. Interior points (1, 2), (2, 5). Interior $(1, 2) \cup (2, 5)$. Closure $[1, 5] \cup \{10\}$.
- (b) Boundary points: all points in $[0,1] \cap \mathbb{Q}$. No interior point. Interior ϕ . Closure [0,1]
- (c) Boundary points $\{1/k : k \ge 1\}, 0$. Interior points: all points in this set. Interior: This set (because it is an open set). Closure [0, 1].
- (d) Boundary points $1, 2, 3, \cdots$. No interior points. Interior ϕ . Closure: the set itself (it is a closed set).
- 3. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R}^2 :
 - (a) $R \equiv [0,1) \times [2,3) \cup \{0\} \times (3,5).$
 - (b) $\{(x,y): 1 < x^2 + y^2 \le 9\}.$
 - (c) $\mathbb{R}^2 \setminus \{(1,0), (1/2,0), (1/3,0), (1/4,0), \cdots \}.$

Solution.

- (a) Boundary points: the geometric boundary of the rectangle and the segment $\{0\} \times [3,5]$. Interior points: all points inside the rectangle. Interior $(0,1) \times (3,5)$. Closure $[0,1] \times [3,5] \cup \{0\} \times [3,5]$.
- (b) Boundary points: all (x, y) satisfying $x^2 + y^2 = 1$ or $x^2 + y^2 = 9$. Interior points: all points satisfying $1 < x^2 + y^2 < 9$. Interior $\{(x, y) : 1 < x^2 + y^2 < 9\}$. Closure $\{(x, y) : 1 \le x^2 + y^2 \le 9\}$.
- (c) Boundary points: The set together with $\{(0,0)\}$. Interior points: None. Interior ϕ . Closure $\{(0,0), (1,0), (1/2,0), (1/3,0), \cdots \}$.
- 4. Describe the closure and interior of the following sets in C[0, 1]:
 - (a) $\{f: f(x) > -1, \forall x \in [0,1]\}.$
 - (b) $\{f: f(0) = f(1)\}.$

Solution.

- (a) Closure $\{f \in C[0,1]: f(x) \ge -1, \forall x \in [0,1]\}$. Interior: The set itself. It is an open set.
- (b) Closure: The set itself. It is a closed set. Interior: ϕ . For any f satisfying f(0) = f(1), there are many $g \in C[0, 1]$ satisfying $||g f||_{\infty} < \varepsilon$ but $g(0) \neq g(1)$.
- 5. Let A and B be subsets of (X, d). Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Solution. We have $\overline{A} \subset \overline{B}$ whenever $A \subset B$ right from definition. So $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$. Conversely, if $x \in \overline{A \cup B}$, $B_{\varepsilon}(x)$ either has non-empty intersection with A or B. So there exists $\varepsilon_j \to 0$ such that $B_{\varepsilon_j}(x)$ has nonempty intersection with A or B, so $x \in \overline{A} \cup \overline{B}$.

6. Show that $\overline{E} = \{x \in X : d(x, E) = 0\}$ for every non-empty $E \subset X$.

Solution. Let $x \in \overline{E}$. By definition, for each *n* there exists some $y_n \in E$ such that $y_n \in B_{1/n}(x)$. It follows that $d(x, E) \leq d(x, y_n) \to 0$ which implies d(x, E) = 0. On the other hand, if d(x, E) = 0, there exists $\{x_n\} \subset E$ such that $d(x, x_n) \to 0$, so $x \in \overline{E}$.

7. Show that f is continuous from (X, d) to (Y, ρ) if and only if for every $E \subset X$, $f(\overline{E}) \subset \overline{f(E)}$.

Solution. Let $y_0 = f(x_0)$, $x_0 \in \overline{E}$. We can find $x_n \in E$, $x_n \to x_0$. By continuity, $f(x_n) \to f(x_0) = y_0$. As $f(x_n) \in f(E)$, $y_0 = f(x_0) \in \overline{f(E)}$. Conversely, if for some $x_n \to x_0$ but $f(x_n)$ does not tend to $f(x_0)$, there exists some $B_\rho(f(x_0))$ such that there are infinitely many $f(x_n)$ not belonging to $B_\rho(f(x_0))$. WLOG assume the whole $\{f(x_n)\}$ does, that is, $\{f(x_n)\} \cap B_\rho(f(x_0)) = \phi$ for all n. Now consider the set $F = \{x_1, x_2, \cdots\}$. By assumption, $f(\overline{F}) \subset \overline{f(F)}$. In particular, $f(x_0) \in \overline{f(F)}$, that is, $B_\rho(f(x_0)) \cap \{f(x_n)\} \neq \phi$ for some n, contradiction holds.