Solution 6

1. Show that f is continuous from (X, d) to (Y, ρ) if and only if $f^{-1}(F)$ is closed in X whenever F is closed in Y.
Solution. Use $f^{-1}(Y \backslash F)=X \backslash f^{-1}(F)$ to reduce to the statement: f is continuous iff $f^{-1}(G)$ is open for open G.
2. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R} :
(a) $[1,2) \cup(2,5) \cup\{10\}$.
(b) $[0,1] \cap \mathbb{Q}$.
(c) $\bigcup_{k=1}^{\infty}(1 /(k+1), 1 / k)$.
(d) $\{1,2,3, \cdots\}$.

Solution.
(a) Boundary points $1,2,5,10$. Interior points $(1,2),(2,5)$. Interior $(1,2) \cup(2,5)$. Closure $[1,5] \cup\{10\}$.
(b) Boundary points: all points in $[0,1] \cap \mathbb{Q}$. No interior point. Interior ϕ. Closure $[0,1]$
(c) Boundary points $\{1 / k: k \geq 1\}, 0$. Interior points: all points in this set. Interior: This set (because it is an open set). Closure $[0,1]$.
(d) Boundary points $1,2,3, \cdots$. No interior points. Interior ϕ. Closure: the set itself (it is a closed set).
3. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R}^{2} :
(a) $R \equiv[0,1) \times[2,3) \cup\{0\} \times(3,5)$.
(b) $\left\{(x, y): 1<x^{2}+y^{2} \leq 9\right\}$.
(c) $\mathbb{R}^{2} \backslash\{(1,0),(1 / 2,0),(1 / 3,0),(1 / 4,0), \cdots\}$.

Solution.

(a) Boundary points: the geometric boundary of the rectangle and the segment $\{0\} \times$ $[3,5]$. Interior points: all points inside the rectangle. Interior $(0,1) \times(3,5)$. Closure $[0,1] \times[3,5] \cup\{0\} \times[3,5]$.
(b) Boundary points: all (x, y) satisfying $x^{2}+y^{2}=1$ or $x^{2}+y^{2}=9$. Interior points: all points satisfying $1<x^{2}+y^{2}<9$. Interior $\left\{(x, y): 1<x^{2}+y^{2}<9\right\}$. Closure $\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 9\right\}$.
(c) Boundary points: The set together with $\{(0,0)\}$. Interior points: None. Interior ϕ. Closure $\{(0,0),(1,0),(1 / 2,0),(1 / 3,0), \cdots\}$.
4. Describe the closure and interior of the following sets in $C[0,1]$:
(a) $\{f: f(x)>-1, \forall x \in[0,1]\}$.
(b) $\{f: f(0)=f(1)\}$.

Solution.
(a) Closure $\{f \in C[0,1]: f(x) \geq-1, \forall x \in[0,1]\}$. Interior: The set itself. It is an open set.
(b) Closure: The set itself. It is a closed set. Interior: ϕ. For any f satisfying $f(0)=f(1)$, there are many $g \in C[0,1]$ satisfying $\|g-f\|_{\infty}<\varepsilon$ but $g(0) \neq g(1)$.
5. Let A and B be subsets of (X, d). Show that $\overline{A \cup B}=\bar{A} \cup \bar{B}$.

Solution. We have $\bar{A} \subset \bar{B}$ whenever $A \subset B$ right from definition. So $\bar{A} \cup \bar{B} \subset \overline{A \cup B}$. Conversely, if $x \in \overline{A \cup B}, B_{\varepsilon}(x)$ either has non-empty intersection with A or B. So there exists $\varepsilon_{j} \rightarrow 0$ such that $B_{\varepsilon_{j}}(x)$ has nonempty intersection with A or B, so $x \in \bar{A} \cup \bar{B}$.
6. Show that $\bar{E}=\{x \in X: d(x, E)=0\}$ for every non-empty $E \subset X$.

Solution. Let $x \in \bar{E}$. By definition, for each n there exists some $y_{n} \in E$ such that $y_{n} \in B_{1 / n}(x)$. It follows that $d(x, E) \leq d\left(x, y_{n}\right) \rightarrow 0$ which implies $d(x, E)=0$. On the other hand, if $d(x, E)=0$, there exists $\left\{x_{n}\right\} \subset E$ such that $d\left(x, x_{n}\right) \rightarrow 0$, so $x \in \bar{E}$.
7. Show that f is continuous from (X, d) to (Y, ρ) if and only if for every $E \subset X, f(\bar{E}) \subset \overline{f(E)}$.

Solution. Let $y_{0}=f\left(x_{0}\right), x_{0} \in \bar{E}$. We can find $x_{n} \in E, x_{n} \rightarrow x_{0}$. By continuity, $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)=y_{0}$. As $f\left(x_{n}\right) \in f(E), y_{0}=f\left(x_{0}\right) \in \overline{f(E)}$. Conversely, if for some $x_{n} \rightarrow x_{0}$ but $f\left(x_{n}\right)$ does not tend to $f\left(x_{0}\right)$, there exists some $B_{\rho}\left(f\left(x_{0}\right)\right)$ such that there are infinitely many $f\left(x_{n}\right)$ not belonging to $B_{\rho}\left(f\left(x_{0}\right)\right)$. WLOG assume the whole $\left\{f\left(x_{n}\right)\right\}$ does, that is, $\left\{f\left(x_{n}\right)\right\} \cap B_{\rho}\left(f\left(x_{0}\right)\right)=\phi$ for all n. Now consider the set $F=\left\{x_{1}, x_{2}, \cdots\right\}$. By assumption, $f(\bar{F}) \subset \overline{f(F)}$. In particular, $f\left(x_{0}\right) \in \overline{f(F)}$, that is, $B_{\rho}\left(f\left(x_{0}\right)\right) \cap\left\{f\left(x_{n}\right)\right\} \neq \phi$ for some n, contradiction holds.

